
ISBN: 978-960-578-058-6

Creating an Adventure Game with an Embedded
Novice Programming Environment for Learning

LOGO

Ioannis Sarlis1, Dimitrios Kotsifakos2, Dr. Panagiotis Zaharias3

1MSc, Med, IT Teacher, ioannis@sarlis.me
2 MSc, PhD (candidate), Electronic Engineering, VET, University of Piraeus, dimkots@sch.gr

3Adjunct Faculty Member, Open University of Cyprus, pz@aueb.gr

Abstract
This article presents the construction of a game that includes a Novice Programming
Environment for high school students and is to be used for teaching LOGO programming
language. This programming environment is a game that is designed, implemented and tested
specifically for junior high-school students for them to acquire basic programming skills. This
game is called "Super Turtle Adventures" and is based on Digital Game-Based Learning
(DGBL). It helps students to learn LOGO Programming Language, by creating various
challenges and puzzles, which they must solve using LOGO code. Students pass from one
level to the next by solving these puzzles. The benefit for students playing this game is, on the
one hand, the improvement of their programming skills on the other that they learn to respect
the environment through recycling. The article treats programming as a new digital skill that
needs to be mastered by high school students. The article concludes that programming should
be taught using DGBL in schools and suggests "Super Turtle Adventures" game as a Digital
Game-Based Learning application for teaching LOGO in schools.

Keywords: LOGO Programming Language, Teaching Programming, Novice Programming
Environment (NPE), Digital Game-Based Learning (DGBL)

1. Digital Game-Based Learning (DGBL)
Digital Game-Based Learning (DGBL) is a teaching approach that involves the use of
digital games into teaching, in order to learn, explore and/or practice some form of
training material. Learning through a digital game environment integrates learning
principles while enabling students to act within the game environment. Drawing from
the constructivist theory of education, digital game-based learning (DGBL) connects
educational content with a computer or video games and can be used in almost all
subjects and skill levels (Kotsifakos, 2018). Proponents of digital game-based
learning contend that it provides learning opportunities that engage students in
interactive instruction and helps prepare them to participate in the globalized,
technological society of the 21st century (Coffey, 2009).

Πρακτικά 11th CIE2019 3

ISBN: 978-960-578-058-6

Educational games were created primarily for teaching purposes and so researchers
are now taking advantage of the educational benefits these games procure. As noted
by Dede (2018), Sarlis (2018), and many other researchers, Digital Game-Based
Learning DGBL is essentially a CAI (Computer Aided Instruction) and for that
reason, DGBL can provide an environment for students to practice and acquire the
necessary skills required by the school curriculum. Recent studies have shown that
there is significant interest in Digital Game-Based Learning (Prensky, 2003). These
games can be used as tools together with their school lessons so that the students are
motivated in learning.

Gee (2007) points out that students understand better the things they are going to do
when an idea is visualized. For that reason, an educational digital game forms a rich
multimedia environment in which children can think, understand, and easily perform
things. Therefore, digital games can be used as an alternative way of teaching. Some
of the learning principles are directly related to the digital game, and these are:

 Interaction

 Creativity

 Experiment

According to Gee (2009), digital games provide a continuous learning environment
through the attractiveness and the entertainment they provide to users. The purpose of
an educational game, in comparison with all digital games, is not only to achieve the
goals of the game but also a way to acquire knowledge and skills based on the game
and on situations that focus on the learning objects of a lesson. An educational game
can provide students with a framework to achieve the educational goals that have
been originally set by the teacher. Gaming applications offer on the one hand a
pleasant and entertaining environment for students and on the other hand an
indication and an incentive for the student to achieve learning goals. Also, these
applications uses a familiar process that students often experience when they play
digital games generally; e.g. placing a “gold star” on a level is a confirmation that the
player has completed a level, or that he/she is on the right path, giving the player
positive feedback, thus increasing the self-esteem of the player.

Children, like all people, love to learn at any time when they are not forced to do so
(Wabishabi, 2019). Games are a way of attracting students to learning in a pleasant
way; modern computers and video games provide young people with such learning
opportunities in a very short time, often through a touch that only takes seconds
(Prensky, 2007). Gee argues that “the real significance of good computer games and
video games is that they allow people recreation in new worlds and thus achieve
entertainment and deep learning at the same time” (Gee, 2007). Some teachers, in
addition, consider that Game-Based Learning is a strong educational approach (von
Wangenheim & Shull, 2009). Educational games move students to the center of the

4 11th Conference on Informatics in Education 2019

ISBN: 978-960-578-058-6

learning process, which makes this kind of learning easier, interesting and more
effective. With the aim of Information and Communication Technologies (ICT) in
Education, computers turn into learning multi-tools; teaching and learning processes
become pleasant, interesting, entertaining and comprehensible. Digital Game-Based
Learning (DGBL), is a learning approach that involves the use of computers and
digital games for exploring and practicing educational materials. The creation of an
educational game is not only for entertainment purposes; the main purpose of this
creation is the acquisition of knowledge and skills for situations that are not primarily
related to the game itself, but which focus on the learning object of the course.

2. LOGO Programming Language
LOGO Programming language is an educational programming language, designed in
1967 by Wally Feurzeig, Seymour Papert and Cynthia Solomon (InfoSys Foundation,
2017). LOGO is not an acronym but comes from the Greek word “Logos” which
means “word” or “logical thinking”. The name “LOGO” was given by Artificial
Intelligence researcher W. Feurzeig (Goldenberg, 1982), in order to separate it from
other programming languages that were mainly numerical-oriented and had nothing
to do with graphics or logical thinking. According to Papert, (1993), “We learn better
by doing ... but we learn even better if we combine action with speech and reflection
on what we do”. LOGO is a programming language that is specifically designed to be
used by young children (students of primary and secondary education) to learn code.
Using LOGO, students can communicate with the computer and then program it very
easily and quickly, even if they are new to programming. LOGO uses functional
programming techniques. For example, the user's commands are executed by calling
special procedures, the so-called functions.

MicroWorlds Pro is a multimedia environment for programming; in fact, it is a
software implemented to create programs and multimedia applications that are based
on LOGO. It belongs in the educational software category which is suitable for
composite projects development. MicroWorlds Pro uses the Logo programming
language to enable players to program turtles. Turtle is a virtual character executing
LOGO commands, depending on how it is programmed. Each turtle has a name,
position, direction, pen thickness, pen color, shape and can be instructed to execute
certain commands when it is clicked. Turtles can be used to design, “decorate” a
page, or create animations.

3. The Features of LOGO Language
All programming languages are tools for modeling. LOGO was designed to create
models in a very easy way and is therefore particularly suitable for children. With
LOGO, reality can be represented as a model. The term “Modeling” describes the
process that begins with the whole and continues with fragmenting the whole into

Πρακτικά 11th CIE2019 5

ISBN: 978-960-578-058-6

smaller entities which are called sub-projects. For example, a LOGO programmer can
“teach” a Virtual Turtle how to complete these specific tasks using programming
code. (Swan, 1991) through coding. Often, teaching new words to the “turtle” is like
writing procedures, ie. sets of instructions for executing small tasks. Learners can
interact with LOGO by collecting, processing, analyzing, comparing, representing
(symbolically, graphically, virtually) generalizing and interpreting data, while
simultaneously adopting a variety of problem-solving strategies

This interaction starts with simple tests and debugging commands and goes on to
more complex coding entities through constant self-monitoring and feedback. By
becoming familiar with the processes of hypothesis – experimentation - trial and
error, learners can grasp the principles of debugging and correcting errors in their
code. They develop a high degree of confidence, responsibility, and appreciation for
different methodologies and they acquire skills of expression, cooperation, and
communication with the computer. Finally, debugging commands and programs help
students to reconstruct their original approach to the problem (Glezou & Grigoriadou,
2004). LOGO is a programming language that is often perceived as a philosophy of
education, known as discovery learning or constructivism. Although its educational
effectiveness is often disputed, LOGO language is considered an ideal tool for
“learning by doing” (OpenWorld Learning, 2014). It is undoubtedly an important tool
at the teacher's disposal for the development of exploration skills, creativity, problem
solving, logic and algorithmic thinking development. LOGO was created to educate
children in programming and will always be a point of reference when we talk about
coding lessons for the young ages. It is, therefore, perceived that LOGO is a language
particularly suited to small ages of students as it entails a role-playing learning
process. It is very simple in syntax and in direct contact with the students. As students
see the effect of the command on the screen and interact with the turtle, they become
the authors of their own operating rules (programming commands), through a
pleasant programming environment that does not involve strict rules of code syntax.

4. Novice Programming Environments (NPE)
Novice Programming Environments have been developed to replace the traditional
code syntax, using visual commands rather than typing. This approach reduces the
cognitive load associated with mandate typing, allowing users to focus on the
conceptual solution of a problem. Also, programming environments of this type are
easy for users of all ages, cognitive backgrounds, and interests, allowing them to
experiment with their various components simply by joining pieces of code together
just like LEGO blocks (Resnick et al., 2009). Environments that assume the above
features are called NPEs (Novice Programming Environments) (Krul, 2012). NPEs,
such as Scratch, Alice, and Lego Mindstorms NXT, have been widely accepted and
publicized in recent years, as it has shown that NPEs play an important role in
attracting and retaining new developers in school and non-school environments

6 11th Conference on Informatics in Education 2019

ISBN: 978-960-578-058-6

(Federici, 2011). NPEs uses visual elements instead of programming commands,
concealing the complexity of typing code in a programming language, and makes it
easier for novice developers to understand basic algorithmic structures (Roy, Rousse,
& DeMeritt, 2012).

NPEs have pleasant interfaces which facilitate software development in a user-
friendly programming environment. They are not "threatening" or "hostile" for a
novice developer. Students experience no stress or low self-esteem when they meet
such a user-friendly programming environment. Indeed, due to the ease of use of
NPE, students appear more receptive to further deepening in programming (Olabe,
Olabe, Basogain, & Castaño, 2011).

Figure 1. SCRATCH Novice Programming Environment
(source: https://www.raspberrypi.org/magpi/wp-
content/uploads/2015/10/Scratch_Pac_Man.png)

However, it is reminded that the use of an NPE does not solve the problem of coding
and syntax of commands, since students will have to deal with it later, usually when
they must learn a second “traditional” programming language (Fig. 1).

In most cases, this is postponed until students understand the basic programming
principles (Wilson & Moffat, 2010). It must be highlighted that students are actively
involved in programming lessons when these are integrated -within a framework of
teaching- in topics that they are directly interested in (Gray, Abelson, Wolber, and
Friend, 2012). Margulieux et al., (2013), point out that the problem deterring students
from participating in programming lessons can be addressed by turning introductory

Πρακτικά 11th CIE2019 7

ISBN: 978-960-578-058-6

programming into an easy and fun experience. There are, in fact, several ways to
make this possible; one of these ways is to reduce the cognitive load required of
beginners learning to program, with a corresponding reduction in the amount of
information used to solve a problem (Robins, Rountree, & Rountree, 2003).

Figure 2. First Page of Super Turtle Adventures
(source: http://www.TurtleAdventures.info/game)

Super-Turtle Adventures (https://superturtleadventures.info/) is a Novice
Programming Environment (NPE) that bridges the gap of visual programming and
procedural programming. This game has an embedded programming environment
(Editor, Interpreter, Compiler, and Linker) where students can write a program in
LOGO using “blocks”. Using blocks of commands, students generate code by
inserting, changing or removing block commands (Fig. 2, 3, 4). Adding or removing
blocks into the programming language editor is like writing or removing code lines of
LOGO Programming Language. LOGO Programming language introduces learners to
computer programming in a sense that they can type commands, give meaning to the
writing of commands, make variables where necessary, create their own functions,
etc.

8 11th Conference on Informatics in Education 2019

ISBN: 978-960-578-058-6

Figure 3. ALICE Novice Programming Environment
(source: https://www.alice.org/wp-content/uploads/2017/05/BuildingAScene_Image.jpg)

5. Conclusions
Computer Programming helps students to develop their analytic and synthetic
thinking, enhances their skills in designing and solving problems, and has a positive
impact on their creativity and imagination. Novice Programming Environments and
coding games have become user-friendly to such high degree, that young children,
even Kindergarten pupils, can create their own code. It is pointed out in this article
that LOGO is a general-purpose language, but it became more famous for its turtle
graphics creations; these creations are made by motion and design commands that are
used to produce graphics or paintings on the screen of a computer, or by instructing a
small robot called a turtle, to do this. LOGO is a language, which is one of the oldest
programming languages, and it was created for educational purposes. LOGO
programming language, in relation to Scratch, shows a better correlation of
programming with Geometry elements already known to children.

Also, here is a reference to MicroWorlds Pro, which is a multimedia programming
environment, a software made to create programs and multimedia applications that
are based on LOGO. It is true, that the issue of writing code (coding), cannot be
simply solved by replacing the classical programming with “blocks” because pupils
or students will, sooner or later, be confronted with the “hostile environment” of an
editor, a compiler and a linker to program in a “classical” or “traditional”

Πρακτικά 11th CIE2019 9

ISBN: 978-960-578-058-6

programming environment. Regarding NPE, they have a pleasant interface to enable
software development in a novice programming environment. It is not a “threatening”
or “hostile” beginner programmer and consequently, by using these user-friendly
environments, students do not feel anxious or experience low self-esteem when they
meet them.

Figure 4. Super-Turtle Adventures Novice Programming Environment

Hence, the creation of an NPE environment for programming is deemed necessary.
This article states that, in order to attract students, the research team found it
necessary to proceed with the creation of an application which looked like a digital
game, but it will be a tool to teach students programming. “Super Turtle Adventures”
is an Adventure Game which helps students to learn programming through the
integration of an NPE environment. By providing students with all necessary
commands, as well as optional loop commands, it helps learners reach the apparent
goal of this game, which is simply to recycle various items while the main purpose of
this application is for students to learn how to write code in LOGO.

References
Coffey, H. (2009). Digital game-based learning. Chapel Hill, NC.: University of
North Carolina at Chapel Hill School of Education.

10 11th Conference on Informatics in Education 2019

ISBN: 978-960-578-058-6

Dede, C. (2018, 10). The Potential of Digital Game-Based Learning for Improving
Education in the Global South. Retrieved from Digital Learning for Development:
http://dl4d.org/wp-content/uploads/2018/10/01-Digital-Game-Based-Learning-Main-
Paper.pdf

Federici, S. (2011). A minimal, extensible, drag-and-drop implementation of the C
programming language. In Proceedings of the 2011 conference on Information
technology education (SIGITE '11) (pp. 191-196). New York: ACM.

Gee, J. P. (2007). What video games have to teach us about learning and literacy (2nd
ed.). New York: Palgrave Macmillan.

Gee, J. P. (2009). Deep learning properties of good digital games: How far can they
go? In U. Ritterfeld, M. Cody, & P. Vorderer, Serious games: Mechanisms and
effects (pp. 67–82). New York, NY: Routledge.

Glezou, K., & Grigoriadou, M. (2004). Playing, probing, and learning, while
programming the turtle. In P. Politi (Ed.), Proceedings of the Proceedings of 2nd
Conference with international participation "Teaching of Informatics", (pp. 182-192).
Volos.

Goldenberg, E. P. (1982, August). Logo - A Cultural Glossary. Byte Magazine, 7(8),
p. 210.

Gray, J., Abelson, H., Wolber, D., & Friend, M. (2012). Teaching CS principles with
app inventor. Proceedings of the 50th Annual Southeast Regional Conference (ACM-
SE '12) (pp. 405-406). NY, USA: ACM.

InfoSys Foundation. (2017, Jun 12). Q & A with Dr. Cynthia Solomon. Retrieved Jan
17, 2018, from Infosys Foundation USA: http://www.infosys.org/infosys-foundation-
usa/media/blog/Pages/cynthia-solomon-qna.aspx

Kotsifakos, D., Petrakis, G., Stavrou, M., & Douligeris, C. (2018, September). An
Online Game for the Digital Electronics Course for Vocational Education and
Training (VET) Students. In International Conference on Interactive Collaborative
Learning (pp. 638-649). Springer, Cham.

Krul, K. (2012). Teaching Control Structures Using App Inventor. Master Thesis.
Retrieved January 26, 2018, from Utrecht University Repository:

Πρακτικά 11th CIE2019 11

ISBN: 978-960-578-058-6

https://dspace.library.uu.nl/bitstream/handle/1874/254527/ResearchPaper-KevinKrul-
25-6.pdf?sequence=1&isAllowed=y

Margulieux, L., Catrambone, R., & Guzdial, M. (2013). Subgoal Labeled Worked
Examples Improve K-12 Teacher Performance in Computer Programming Training.
Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp.
978-983). Austin, TX: Cognitive Science Society.

Olabe, J. C., Olabe, M. A., Basogain, X., & Castaño, C. (2011). Programming and
robotics with Scratch in primary education. In A. Mendez-Vilas (Ed.), Education in a
Technological World: Communicating current and Emerging Research and
Technological Efforts (pp. 356–363). Badajoz - Spain: Formatex.

OpenWorld Learning. (2014). Open World Learning. Retrieved Jan 17, 2018, from
MicroWorlds in Action: http://mia.openworldlearning.org/logo.htm

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York:
Basic Books.

Papert, S. (1993). THE CHILDREN'S MACHINE: Rethinking School In The Age Of
The Computer. New York: Basic Books.

Prensky, M. (2003). Digital Game Based Learning: Exploring the Digital Generation.
Educational Technology, U.S. Department of Education.

Prensky, M. (2007). Digital Game-Based Learning. MN: St. Paul, Paragon House.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,
K., . . . Kafai, Y. (2009). Scratch: Programming for All. Communications of the
ACM, 52(11), pp. Pages 60-67.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching
programming: A review and discussion. Computer Science Education, pp. 13. 137-.
10.1076/csed.13.2.137.14200.

Roy, K., Rousse, W., & DeMeritt, D. (2012). Comparing the mobile novice
programming environments: App Inventor for Android vs. GameSalad. In
Proceedings of the 2012 IEEE Frontiers in Education Conference (FIE) (FIE '12) (pp.
1-6). Washington, DC: IEEE Computer Society.

12 11th Conference on Informatics in Education 2019

ISBN: 978-960-578-058-6

Sarlis, I. K. (2018, 6). Development of an Adventure Game for learning programming
and coding in LOGO. Retrieved 6 20, 2019, from Open University of Cyprus -
Kypseli Digital Repository: https://kypseli.ouc.ac.cy/handle/11128/3629?show=full

Swan, K. (1991). Programming objects to think with: Logo and the teaching and
learning of problem solving. Journal of Educational Computing Research, 7(1), pp.
89-112.

von Wangenheim, C. G., & Shull, F. (2009, March). To Game or Not to Game? IEEE
Software, 26(2), pp. 92-94.

Wabishabi, L. (2019). Why Some Students Dislike School but Love Education.
Retrieved from Wabisabi Learning: https://www.wabisabilearning.com/blog/why-
some-students-dislike-school-love-education

Wilson, A., & Moffat, D. (2010). Evaluating scratch to introduce younger
schoolchildren to programming. Glasgow, Scotland, UK: Glasgow Caledonian
University.

 Περίληψη

Στο άρθρο αυτό παρουσιάζεται η κατασκευή ενός παιχνιδιού με ένα ενσωματωμένο
περιβάλλον προγραμματισμού αρχαρίων για μαθητές Γυμνασίου, το οποίο και πρόκειται να
χρησιμοποιηθεί για τη διδασκαλία της γλώσσας προγραμματισμού LOGO. Αυτό το
περιβάλλον προγραμματισμού είναι ένα παιχνίδι το οποίο έχει σχεδιαστεί, εφαρμοστεί και
δοκιμαστεί ειδικά για μαθητές Γυμνασίου προκειμένου να αποκτήσουν βασικές δεξιότητες
προγραμματισμού. Το παιχνίδι ονομάζεται "Super Turtle Adventures" και βασίζεται στη
μάθηση μέσω ψηφιακού παιχνιδιού. Βοηθά τους μαθητές να μάθουν τη γλώσσα
προγραμματισμού LOGO, δημιουργώντας διάφορους γρίφους και παζλ, τα οποία πρέπει να
επιλύσουν οι μαθητές χρησιμοποιώντας κώδικα LOGO. Οι μαθητές περνούν από το ένα
επίπεδο στο επόμενο μέσω της επίλυσης των γρίφων. Το όφελος για τους μαθητές είναι
αφενός ότι βελτιώνουν τις δεξιότητες προγραμματισμού τους και αφετέρου ότι μαθαίνουν να
σέβονται το περιβάλλον μέσω της ανακύκλωσης. Ο προγραμματισμός αντιμετωπίζεται ως μια
νέα ψηφιακή δεξιότητα ο οποίος πρέπει να κατακτηθεί από μαθητές του Γυμνασίου. Στον
επίλογο του άρθρου τονίζεται ότι ο προγραμματισμός θα πρέπει να διδάσκεται
χρησιμοποιώντας μάθηση μέσω ψηφιακού παιχνιδιού στα σχολεία και προτείνει το παιχνίδι
"Super Turtle Adventures" ως μια εκπαιδευτική εφαρμογή ψηφιακού παιχνιδιού για τη
διδασκαλία της LOGO στα σχολεία.

Λέξεις κλειδιά: Γλώσσα προγραμματισμού LOGO, Διδασκαλία Προγραμματισμού,
Περιβάλλον προγραμματισμού αρχαρίων, Μάθηση μέσω ψηφιακών παιχνιδιών.

